Las baterías se alimentan de electricidad, que puede producirse de múltiples maneras, y su impacto es el de la propia generación de electricidad. Pueden recargarse en las horas valle, de menor demanda, e incluso en un futuro podrían verter electricidad a la red en horas punta de máxima demanda (V2G). La red de distribución existe, a diferencia del hidrógeno, y la infraestructura básica podría construirse en poco tiempo y sin grandes dificultades.
Pero también hay importes desventajas e inconvenientes. En primer lugar la capacidad y el coste de las baterías. Las baterías de iones de litio mejoran la capacidad y la autonomía de los automóviles eléctricos, pero son costosas, se recalientan y, sobre todo, existe un debate no resuelto sobre si hay recursos suficientes de litio para fabricar millones de nuevos automóviles. El precio de la tonelada de litio pasó de costar 350 dólares en 2003 a 3.000 dólares en 2008.
La clave del futuro del coche eléctrico es la batería recargable, que condiciona la velocidad máxima, la autonomía entre recargas, el tiempo de recarga y la duración de la batería. Los precios de las baterías se han reducido en los últimos años, y lo harán aún más a medida que aumente la demanda y se produzcan en grandes series.
La distancia que un vehículo eléctrico puede recorrer sin recargar la batería, en los modelos actuales o de próxima fabricación, va de 60 a 250 kilómetros. Hay que tener en cuenta que la mayor parte de los desplazamientos diarios son inferiores a los 60 km. Un automóvil eléctrico consume de 0,12 kWh a 0,30 kWh por kilómetro; para recorrer 100 kilómetros haría falta una batería con una capacidad de 12 kWh a 30 kWh, dependiendo del modelo.
Los vehículos de gasolina y gasóleo han mantenido y conservan una hegemonía casi absoluta desde hace un siglo, debido a que superan a los vehículos eléctricos en tres cuestiones clave: mayor autonomía, el tiempo de recarga o de repostar y el coste del vehículo, determinado por el precio de la batería. Un hecho es incontestable: la gasolina y el gasóleo proporcionan mayor densidad energética y flexibilidad que la más avanzada de las baterías: 13 kWh/kg en la gasolina (8,9 kWh por litro) y 12,7 kWh/kg en el gasóleo, frente a 0,16 kWh por kg de la última generación de baterías de iones de litio.
La batería de iones de litio, también denominada batería Li-Ion, es un dispositivo diseñado para almacenamiento de energía eléctrica que emplea como electrolito, una sal de litio que procura los iones necesarios para la reacción electroquímica reversible que tiene lugar entre el cátodo y el ánodo.
Las propiedades de las baterias de Li-ion, como la ligereza de sus componentes, su elevada capacidad energética y resistencia a la descarga, la ausencia de efecto memoria o su capacidad para operar con un elevado número de ciclos de regeneración, han permitido el diseño de acumuladores livianos, de pequeño tamaño y variadas formas, con un alto rendimiento, especialmente adaptados para las aplicaciones de la industria electrónica de gran consumo, y también para los coches eléctricos.
Desde la primera comercialización a principios de los años 1990 de un acumulador basado en la tecnología Li-ion, su uso se ha popularizado en aparatos como teléfonos móviles, agendas electrónicas, ordenadores portátiles y lectores de música, y hoy la industria del automóvil empieza a dar un salto cualitativo.
Pero hay otras alternativas, como las de zinc-aire, e incluso las de aluminio-aire, o las de plomo mejoradas. En los laboratorias de Japón, Estados Unidos, Europa y Corea del Sur se estudian todo tipo de alternativas, aunque será China quien las fabrique. Es probable que el futuro del coche eléctrico pase por el desarrollo de baterías más potentes de zinc-aire, que sustituyan a las de iones de litio. Las de zinc-aire almacenan tres veces más electricidad que las mejores de iones de litio.
Las baterías de zinc-aire son una clara alternativa a las de iones de litio. Tienen una densidad energética de 370 Wh/kilogramo. Algunos expertos califican al zinc como el combustible eléctrico del futuro. Entre sus principales ventajas destaca su facilidad de carga y su alto potencial energético. A diferencia de otros tipo de baterías estas necesitan que el vehículo eléctrico vaya equipado con un sistema de filtrado e inyección de aire y de un sistema de monitoreo a bordo.
La tecnología zinc-aire respetuosa con el medio ambiente encuentra su mejor aplicación en prótesis de oído, aparatos electrónicos portátiles y en el sector automotriz. Las baterías de zinc-aire han reemplaza por completo las baterías de mercurio en las prótesis de oído y, quizás, también reemplazarán a las de litio en los futuros automóviles eléctricos.
La tecnología zinc-aire, una tecnología simple, efectiva y de bajo coste, puede ser utilizada como una solución alternativa en los coches eléctricos y en los aparatos electronicos portátiles. Según la consultora Frost & Sullivan, el mercado mundial de baterías de zinc-aire generó unos ingresos de 251 millones de dólares en 2005, que aumentará rápidamente debido a la mayor utilización de las baterías zinc-aire en aplicaciones emergentes, como los automóviles eléctricos.
Las baterías zinc-aire son del tipo primarias, por lo que una vez agotada la carga no pueden recargarse sino que hay que extraer el zinc y cargarlo fuera de la batería. Sin embargo, la carga del zinc es fácil y rápida. Uno de los grandes inconvenientes de la tecnología metal-aire es el hecho de que se trataba de baterías primarias no recargables. Ello hacía que fuese necesario comprar pilas nuevas o tratar de sacar el electrolíto y el hidróxido e introducir nuevo metal dentro.
Por esta razón la investigación va encaminada a conseguir una batería recargable basado en los sistemas metal-aire. La empresa ReVolt ya ha desarrollado la primera batería de Zinc-aire recargable, un salto de gigante para la nueva era del vehículo eléctrico. Este tipo de batería puede proporcionar 3 veces más duración que las de plomo-ácido. Las pilas a base de zinc tienen como principal ventaja la posibilidad de ser recicladas sin límite, sin perder ni sus cualidades químicas, ni sus cualidades físicas.
Las principales tecnologías son las siguientes:
Plomo-ácido: Los acumuladores de plomo-ácido son las más antiguas y tienen una baja relación entre la electricidad acumulada con el peso y el volumen. Ocupan mucho espacio y pesan mucho, pero son duraderas y de bajo coste, y se tasa de reciclaje supera el 90%. Para conseguir una autonomía de 50 km con una velocidad punta de 70 km/h se necesiten más de 400 kg de baterías de plomo-ácido. El periodo de recarga puede oscilar entre 8 y 10 horas.
Níquel Cadmio (NiCd): Utilizan un ánodo de níquel y un cátodo de cadmio. El cadmio es un metal pesado muy tóxico, por lo que han sido prohibidas por la Unión Europea. Tienen una gran duración (más de 1.500 recargas) pero una baja densidad energética (50 Wh/kg), además de verse afectadas por el efecto memoria.
Baterías de Níquel-Hidruro Metálico (NiMH): Las baterías recargables de níquel hidruro metálico es muy similar a la de níquel cadmio, pero sin el metal tóxico, por lo que su impacto ambiental es muy inferior. Las baterías recargables de níquel hidruro metálico almacenan de 2 a 3 veces más electricidad que sus equivalentes en peso de níquel cadmio, aunque también se ven afectadas por el efecto memoria, aunque en una proporción menor. Su densidad energética asciende a unos 80 Wh/kg.
Iones de litio (Li-ion): Las baterías de iones de litio deben su desarrollo a la telefonía móvil y su desarrollo es muy reciente. Su densidad energética asciende a unos 115 Wh/kg, y no sufren el efecto memoria. Las baterías de iones de litio se usan en teléfonos móviles, ordenadores portátiles, reproductores de MP3 y cámaras, y probablemente alimentarán la siguiente generación de vehículos híbridos y eléctricos puros conectados a la red. A pesar de sus indudables ventajas, también presentan inconvenientes: sobrecalentamiento, alto coste y, sobre todo, las reservas de litio, sujetas a una gran controversia.
Baterías de polímero de litio: Es una tecnología similar a la de iones de litio, pero con una mayor densidad de energía, diseño ultraligero (muy útil para equipos ultraligeros) y una tasa de descarga superior. Entre sus desventajas está la alta inestabilidad de las baterías si se sobrecargan y si la descarga se produce por debajo de cierto voltaje.
Baterías Zebra (NaNiCl): Una de las baterías recargables que más prometen son las conocidas como Zebra. Tienen una alta densidad energética, pero operan en un rango de temperaturas que va de 270ºC a 350ºC, lo que requiere un aislamiento. Son apropiadas en autobuses. En Stabio, en el sur del cantón del Tesino (Suiza), se está construyendo una fábrica para producir baterías en serie. Entre sus inconvenientes, además de la temperatura de trabajo, están las pérdidas térmicas cuando no se usa la batería. El automóvil eléctrico Think City va equipado con baterías Zebra Na-NiCl de 17,5 kWh.
Aunque el mercado de los vehículos eléctricos está en sus inicios, ya se comercializan bicicletas eléctricas, motocicletas, automóviles, vehículos de reparto e incluso pequeños autobuses, como los que circulan en Madrid, Málaga, Segovia y otras ciudades. Entre 2010 y 2012 habrá una verdadera eclosión, pues la práctica totalidad de las empresas automovilísticas están desarrollando vehículos totalmente eléctricos o híbridos eléctricos con conexión a la red, como el Volt de General Motors.
El alto coste de las baterías es uno de los mayores obstáculos para el éxito comercial de los vehículos eléctricos, aunque a lo largo de su periodo de vida sea inferior al de un vehículo diesel o de gasolina, al tomar en consideración todos los factores: los costes de capital, los costes de operación no energéticos, los costes energéticos (electricidad versus gasolina o gasóleo) y la fiscalidad del vehículo.
Para crear una demanda y atraer a los consumidores, se requieren políticas fiscales diferenciadas favorables a los vehículos eléctricos, y fórmulas comerciales específicas, como vender sólo el vehículo eléctrico sin la batería, que se alquila o se factura en función de los kilómetros recorridos, de forma que el coste final sea atractivo para los ciudadanos, lo suficientemente atractivo como para reemplazar los vehículos diesel o de gasolina por otros eléctricos. Al final, los números tienen que salir y ser favorables al vehículo eléctrico.
La generalización de las baterías recargables debe evitar los errores del pasado, y para ello se debe considerar todo el ciclo de vida del producto, desde la extracción de las materias primas al reciclaje o eliminación, pasando por la fabricación y la operación, evitando o minimizando en todas las fases la contaminación y el vertido, y muy especialmente de metales pesados.
Las tasas actuales de reciclaje de baterías de vehículos alcanzan o superan el 90%, tasas mucho más elevadas que las pequeñas baterías empleadas en usos domésticos (menos del 10%), y que en gran parte acaban en los vertederos. Dado que el litio es totalmente reciclable, cabe esperar que las tasas del 90% se mantengan e incluso aumenten ligeramente.
El consumo eléctrico de una reconversión paulatina del parque de vehículos en España no plantea problemas irresolubles, e incluso puede contribuir a mejorar la gestión de la red (redes V2G). Un vehículo que consuma 14 kWh por cada 100 km (los consumos oscilan bastante, de 10 a 20 kWh por cada 100 km), y que recorriese unos 15.000 km anuales (una media aceptable), consumiría al año 2.100 kWh.
El parque de vehículos, según los últimos datos de la D.G.T., asciende a 30,3 millones, de los que 21,8 millones son turismos. Su consumo anual total ascendería a unos 80.000 GWh. Esta electricidad la podrían producir, en teoría, unos 37.000 MW eólicos. Para 2020 habrá unos 40.000 MW eólicos en tierra, más otros 5.000 MW de eólica marina, y después del 2020 la potencia eólica seguirá aumentando, además del desarrollo de la solar termoeléctrica o termosolar y la fotovoltaica, que pueden aportar cada una unos 20.000 MW en 2020.
La eólica, por sí sola, podría suministrar en teoría toda la electricidad necesaria para electrificar el parque de vehículos existente en España, aunque lo lógico será un mix equilibrado y variable, que habrá que determinar cuando empiece la electrificación del transporte.
www.nodo50.org/worldwatch/ww/pdf/cocheelectrico.pdf