La Asociación Empresarial Eólica ha presentado alegaciones ante la Comisión Nacional de la Energía (CNE) al Anteproyecto de Ley del Sector Eléctrico en el sector eólico. El crecimiento del sector eólico en Europa, que ha pasado de 13 GW en 2000 a más de 100 GW en 2012, ha propiciado un fuerte aumento del empleo del sector. Según el último informe de EWEA, la Asociación Eólica Europea, el sector contratará unos 50.000 trabajadores cualificados más de aquí a 2030. Para entonces, la mayor demanda será la de trabajadores de operación y mantenimiento. En la actualidad hay una carencia de 7.000 empleados eólicos cualificados al año en Europa que, a juicio de EWEA, alcanzará los 15.000 en 2030 si no aumenta el número de personas que se especializan en eólica. En esta línea se enmarcan los cursos de AEE, que ha decidido impulsar la formación en las áreas de mayor futuro, empezando por el mantenimiento de instalaciones eólicas. A través de un profesorado de alto nivel, los contenidos del curso abordan desde los aspectos generales de la descripción del viento y la estimación del potencial eólico, a todas las cuestiones prácticas que caracterizan un parque. El equipo docente está formado por profesores de distintas especialidades, principalmente ingenieros, físicos y economistas, que en la mayoría de los casos son profesionales que trabajan en las empresas o instituciones del sector eólico, y que son profesores de escuelas técnicas, universidades y centros de investigación. Para más información sobre estos cursos, pincha aquí.

Como calcular los recursos de la energía eólica

REVE

Nuevo modelo probabilístico para la estimación de recursos eólicos.

El nuevo modelo, según los expertos, será de gran utilidad a la hora de decidir dónde se instala un parque eólico de aerogeneradores.

Profesores de la URJC y del MIT han presentado los resultados de un estudio para estimar y predecir con mayor precisión la distribución de velocidad del viento, utilizando menos datos que los modelos habituales empleados en la industria eólica.

El trabajo realizado conjuntamente entre el profesor Alfredo Cuesta-Infante, actualmente investigador del grupo de Computación de Altas Prestaciones y Optimización (CAPO) de la Universidad Rey Juan Carlos, y los profesores Kalyan Veeramachaneni y Una-May O’Reilly del Computer Science and Artificial Intelligence Laboratory (CSAIL), perteneciente al Instituto Tecnológico de Massachusetts (MIT), ha sido presentado en la edición de este año de la International Joint Conference on Artificial Intelligence (IJCAI’15), celebrada en Buenos Aires. Los investigadores han diseñado un modelo probabilístico para la estimación de recursos eólicos. Este modelo relaciona la distribución del viento en diferentes lugares con la que hay en el sitio que deseamos estimar o predecir.

A la hora de decidir el lugar donde colocar una planta aerogeneradora es necesario tener en cuenta muchos factores, pero sin duda uno de los más importantes es valorar adecuadamente la potencia que el viento proporcionará en ese lugar. Dicha potencia está relacionada con la distribución de la velocidad del viento y la dirección del mismo.

El método habitual consiste en colocar una serie de anemómetros en el lugar de interés y realizar mediciones durante un periodo de tiempo, que suele durar de entre 8 y 12 meses. Después se correlacionan estas medidas con datos históricos recogidos durante el mismo periodo en estaciones meteorológicas, aeropuertos, etc., para valorar la adecuación del lugar elegido.

Esta aproximación hace una suposición que casi nunca es adecuada: la distribución de los datos reales es una campana de Gauss, es decir, se supone que los datos son normales o están distribuidos normalmente. Sin embargo, si se analizan los datos se observa que esto no es del todo preciso.

El modelo presentado por los profesores Veeramachaneni, O’Reilly y Cuesta-Infante utiliza, en primer lugar, unas distribuciones capaces de modificar la forma de la campana llamadas ‘funciones Cópula Gaussianas’, que mejoran ampliamente los resultados. Sin embargo, este tipo de funciones aún no es capaz de capturar correctamente los casos extremos (mucho o muy poco viento), ya que, según explica el Dr. Cuesta-Infante de la URJC, “el problema es que en la estructura de dependencia subyacente seguimos teniendo la campana de Gauss. En otras palabras, es como si hubiéramos pegado a la campana unos adornos que le cambian la forma externa”.

Por tanto, el trabajo añade una segunda técnica de modelado que sólo tiene en cuenta cópulas no gaussianas. Con esta técnica, denominada Vines (racimos), los resultados son aún mejores, como era de esperar.

Para llevar a cabo el trabajo se instalaron anemómetros en el techo del Museo de Ciencias, como sitio de interés, en Cambridge (Massachusetts), y se recogieron datos durante dos años. Por otro lado, se ha recopilado información histórica recogida en catorce aeropuertos a lo largo de Nueva Inglaterra y Nueva York. El primer año se utilizó para aprender los modelos y el segundo para validarlos.

Lo más interesante de los resultados es que con sólo tres meses de datos obtenidos, utilizando un material muy asequible -los anemómetros instalados son baratos y la información de los aeropuertos es de dominio público- es posible estimar modelos mucho más precisos de la distribución de la velocidad del viento.

Artículo completo:

Copula Graphical Models for Wind Resource Estimation

Referencia bibliográfica:

Kalyan Veeramachaneni, Alfredo Cuesta-Infante, Una-May O’Reilly, Copula Graphical Models for Wind Resource Estimation, Proc. of the 24th Int. Joint Conf. on Artificial Intelligence (IJCAI 2015), pp. 2646 — 2654