Tras la célula solar fotovoltaica más eficiente

Este nuevo concepto se basa en un aprovechamiento más eficiente de la radiación solar, usando para ello el concepto de materiales de banda intermedia. “Los materiales de banda intermedia representan uno de los conceptos más revolucionarios y prometedores que se están desarrollando en los últimos años para aumentar la eficiencia de las células solares” explica David Pastor, investigador de la Facultad de Ciencias Físicas de la Universidad Complutense de Madrid (UCM).

Actualmente nos encontramos inmersos en la tercera generación de dispositivos fotovoltaicos donde se proponen toda una clase de tecnologías que pretenden obtener células fotovoltaicas de alta eficiencia utilizando técnicas y procesos de fabricación que no encarezcan excesivamente los costes. Estas nuevas tecnologías tienen el potencial de superar las eficiencias máximas impuestas por el límite termodinámico que está situado alrededor del 40%.

“De cumplirse los objetivos que se plantean en esta tercera generación, la energía fotovoltaica podría convertirse en una opción competitiva frente a otras fuentes de energía no renovables”, comenta Javier Olea, otro de los investigadores del grupo.

Una de las tecnologías utilizadas para desarrollar materiales de banda intermedia consiste en la introducción de una alta concentración de átomos de impurezas que creen niveles profundos con energías situadas en el medio de la banda prohibida de energías (gap) del semiconductor huésped. Esto permitiría excitar portadores no sólo desde la banda de valencia a la banda de conducción del semiconductor mediante la absorción de fotones con energía igual o superior a la energía del gap del semiconductor, tal y como ocurre en las células solares tradicionales, sino que se podrían excitar electrones a la banda de conducción mediante fotones con energía inferior al gap del semiconductor, aumentando notablemente la eficiencia de la célula fotovoltaica.

Cálculos teóricos realizados por los profesores Antonio Luque y Antonio Martí, del Instituto de Energía Solar (I.E.S.) de la Universidad Politécnica de Madrid (UPM), predicen para este tipo de células solares eficiencias de hasta el 60%, valores muy por encima de la eficiencia actual para células de Si de una sola unión (22%). Es decir, con el mismo área de material se podrían provechar muchos más fotones procedentes del sol para obtener energía eléctrica.

Una nueva generación de dispositivos fotovoltaicos

El grupo de investigación Láminas Delgadas y Microelectrónica de la Facultad de Ciencias Físicas de la Universidad Complutense de Madrid, liderado por el profesor Germán González, se dedica desde hace cinco años a investigar y desarrollar tecnologías para la obtención de materiales de banda intermedia. Estas investigaciones se han desarrollado en el marco de los proyectos CONSOLIDER GENESIS-FV del Ministerio de Ciencia e Innovación y NUMANCIA II de la Comunidad Autónoma de Madrid, donde colaboran hasta una decena de grupos de investigación. Estos proyectos están coordinados por los profesores Antonio Luque y Antonio Martí, del Instituto de Energía Solar (I.E.S.) de la Universidad Politécnica de Madrid.

Resultados experimentales obtenidos recientemente por el grupo han demostrado que la introducción mediante implantación iónica de titanio en silicio genera materiales de banda intermedia.

“Este trabajo ha sido posible gracias a la labor que se desarrolla en los C.A.I. (Centro de Asistencia a la Investigación) de Técnicas Físicas, especialmente el servicio de Microelectrónica y de Microscopía Electrónica del campus de la UCM”, nos comenta el profesor Germán González.

Los vehículos eléctricos con baterías de litio no emiten CO2 ni dañan el medio ambiente, siempre que la electricidad provenga de energías renovables, como la eólica, la energía solar fotovoltaica y la termosolar. Los aerogeneradores podrán suministrar la electricidad al vehículo eléctrico, que en un futuro servirán también para almacenar y regular la electricidad intermitente del sector eólico.

www.ucm.es